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AbsmcL We investigate the influence of the quantumdot rough boundary on its electronic 
energy spectrum in an external magnetic field. The ease in which roughness amplitude a is small 
in compaIison to the quantum-dot radius R is considered. We show lhat the ratio of damping 
edge states to their energy level separation is dependent on binary roughness conelation function 
and changes in a linear or quadratic way with respect to a/R.  

1. Introduction 

Recently several papers have been devoted to the calculation of the electronic energy 
spectrum (EES) of two-dimensional (2D) limited systems in connection with technical 
applications of quantum-dot (QD) structures (see e.g. Merkt (1990) and references cited 
therein). One of the frequently investigated models is an electron gas with boundary 
simulated by a parabolic potential with the characteristic frequency 00. Increase in 00 
corresponds to a decrease in linear dimension of the QD. This model is interesting because 
one can get simple analytical results even in the presence of a perpendicular magnetic 
field (R6ssler 1990). It is worth noting that the model with parabolic potential has some 
drawback. for instance, there are no edge states and the analysis of its dynamic conductivity 
in terms of 00 meets certain difficulties (Merkt ef a1 1989). In addition to the model with 
parabolic potential, another one with the 2D region bounded by an infinite potential barrier 
is studied. As there is no possibility to get an exact analytical result for the latter model 
with an external magnetic field, one applies numerical methods (Robnik 1986, Lent 1991) 
or a quasi-classical approach (Klama and Rossler 1992). 

The main purpose of this paper is to find out, using the quasi-classical method, how a 
boundary of form different from a circle affects the EES of the QD. 

We shall use a set of random functions to define the deviation of the considered boundary 
from a circle. A similar approach was applied to the study of the EES in a rough semispace 
(Falkovsky 1970) and a thin film (Falkovsky and Klama 1987). 

2. The basic equations 

We consider a bound state of the electron in a circular QD, situated in the xy-plane, with 
a rough boundary in an external magnetic field H = (0, 0, H).  We assume a parabolic 
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dispersion law for the electrons and apply the effectivemass approximation. The electron 
energy spectrum is detem'ned by the poles of the Green finction (GF) fulfilling the following 
equation 

L A  Faikovsky and S Kiam 

['H(p) - ~ l G ( p ,  p') = -0 - P') P E [O. 00) (1) 

where p = (p ,  (D), (D E [--K, n]. We consider the retarded GP assuming that the variable f 
has an infinitely small positive imaginary part: E €+io. The Hamiltonian of equation (1) 
has the following form: 

where 1 = (hc/eH)Ir- ,  o = eHjpc .  
W e  will write down the equation of the QD boundary in the form 

P = R + V ( V )  (3) 

where the amplitude of the random function q(p) is assumed to be small in comparison to 
R .  With the postulate that on the boundary (3) there exists an infinite potential barrier, we 
can write down the boundary condition for Gfp, p') as follows: 

G(p,  p') = 0 at p = R + q(p) or p' = R + ~(p'). (4) 

If we assume that the function G(p,p') as a function of p varies slowly at a distance 
p - R N q ( q ) ,  then the boundary condition (4) can be approximated by the truncated series 
with respect to q(p) at p = R: 

G(R,  I; p') t v ( p ) ( a / a R ) G ( R ,  9; p') = 0, (5) 

The CF G(p, p') may be expanded in a double Fourier series with respect to p and p': 

m 
G(p, p') = G(p, m: P'. m') exp[i(mp - m'p')]. 

m.s'=-m 

We rewrite the boundary condition (5) and equation ( 1 )  in terms of the Fourier transforms, 
getting: 

(7) 
a m 

G ( R ,  m ;  p', m') + q(m - m l ) - G ( R ,  ml;  p'.m') = 0 a R  m,=-m 

and 

where 
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Let us now introduce the Green function C,(p, p') defined everywhere in space. This 
function fulfils equation (1) for p ,  p' E IO, 00) and depends on ((D - p'), so it can be 
expanded in a Fourier series 

The Fourier transform Gm(p. p'; m) fulfils the following equation: 

[WP, m) - c1GmCO, P'; m )  = -S(p - P') (11) 

for p. p' E [O, 00). m = 0, f l ,  3 2 ,  . . .. 
We will look for the solution of the boundary-value problem in the form: 

while equation (8) will be automatically fulfilled for p .  p' E IO, R) and the function 
p ( R ,  9"; p') is determined by the boundary condition (5). The equation (12) in terms 
of the Fourier transforms has the form: 

G(P, m; P'. m') = G,@, p'; m)S,.,, + G,@, R; m)@(R, m; p', m') (13) 

where is the Kronecker symbol. 
On insertion of (13) into the boundary condition (7) we get 

G d R ;  p'm)S,,,, + Gm(R, R; m)p(R,  m; p'. m') + q(m - m')Gk(R, p'; m') 

where 

a 
p -  R-o ap 

G',(R, p'; m) = lim -Gm(p, p'; m). 

After making the following substitution in (14): 

W ,  mi;  P', m') = (v(R,  ml; P', m') - C A R P ' ;  m')S,,,,,)/Gk(R, R; m) (16) 

we obtain the following equation for the function u(R, m: p', m') introduced by way of 
equation (16) 

where 

@(n) = -G',(R, R; m)/Gm(R,  R; m) 

*(m) = G,(R, p'; m) + @-'(m)Gk(R, p'; m). 
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3. The Gwen function of the circular quantum dot 

We solve equation (17) by an iteration method applying the averaging procedure on each step 
of the iteration (see appendix 1). We consider q(p) as a random function and averaging 
is carried out on products of different numbers of functions &). In the zemth-order 
approximation we get 

L A Falkovsky and S Klama 

u ( R ,  m; p', m') = w(R, p'; m)6,,,, vo(R, p'; m)  = O(m)Y(m).  (19) 

On insertion of (19) into (16) and (13) we obtain the GF 

G(P,  m: P', m') = IG&, P'; m)  - G d p ,  R ;  m)G,(R, P'; m)/G,(R, R: m)16m,m, (20) 

which fulfils the specular boundary condition 

G ( p ,  p'; m)  = 0 at p(or p') = R. (21) 

Note that the poles of the first term in square brackets of expression (20) determine the 
EES of the unbounded space at non-zero magnetic field, i.e. the Landau levels. The poles 
(zeros of G,(R, R; m)) of the second term in the expression (20) determine the EES of the 
boundary-value problem. 

The GP G,(p, p': m) can be expressed in term of two linearly independent particular 
solutions of the homogeneous equation corresponding to equation (1 1). We denote these 
solutions by RI@,  m)  and R & J .  m) and assume that: RI(@,  m) is regular at p -+ 0 and 
R z ( p .  m) is regular at p + ca. The required representation for the Green function has the 
following form: 

where W ( p )  is the Wronskian of the particular solutions RI  and Rz, which are expressed 
in terms of Kummer's functions F and U (see Abramowitz and Stegun 1964, ch 13) 

R I ( P :  m) = f(5W"-y)'2F(% ?, 0 

RAP: m) = f ( f ) U @ ,  y , t )  

(=a) 

W b )  

where 

= F"')flexp(-~/2) = ( P / O * / ~  

y = l + m  p = l + l m J  o l = y / 2 - h  C = ? / Z - h  (24) 

2h = 2sjhw - m. 

By applying the well known expression for the Wronskian of the functions F and U we 
obtain the Wronskian of our solutions RI and Rz: 

W ( P )  = - w ~ ) r ( w r ( ~ )  (25) 

where r ( x )  is the r function. 
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For further calculations it is convenient to apply the quasi-classical representation of the 
solutions RI  and Rz. With the aim to obtain this representation we write the Schrodinger 
equation of the considered problem in the form 

dzu(K)/dKz - A 2 q ( K ) U ( K )  = 0 (26) 
where 

U(K) = ( z A K ) ' / ~ R ( ~ ;  m) 

q ( K )  = 1 - 2/K + K0/Kz K = (p / r$ /2  r, = f(~n)'/' (27) 

KO = CIAz C = (mz - 1)/4. 

Since q ( K )  cx K-' at K + 0, the correct function of the quasi-classid approximation can 
be obtained if in the expression for C we omit the term (-114). i.e. we put C = mZ/4 
for m # 0 (see e.g. Nikiforov and Uvarov 1984). Making use of the well known rules for 
matching wavefunctions at the turning points K I  = 1 - (1 - K O ) ' / ~  and KZ = 1 + (1 -KO) ' /~ 
we obtain the following expressions for the functions U ,  and U Z :  

The expressions (28) and (29) hold under the following condition: 

(d/dK)(K[(K - KI)(Kz - K)]-'"] <<A. 
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We find the coefficients A and E by comparing the expressions (28) and (29) with the 
already known asymptotic formulae for Kummer’s functions F and U at large values of 
their arguments: 

L A Falkovsky and S K l a m  

A = exp[-A(1 - InA)] 

B = (lmI!/Zz)r(l -(Y)exp[A(l -1nA)l. 

In the quasi-classical expressions (28c) and (29c) there exist not only large terms but also 
small ones. Leaving them there makes sense only when the coefficients of the large terms 
disappear, i.e. ai 

A L :  dK[lq(K)I]’/z = i r ( N f 1 / 2 )  N = 0 , 1 , 2 ,  .... (31) 

In such a case we have to put in the small terms instead of 

The case of m = 0 has to be considered separately. In such a case there is only one 
turning point ~2 = 2 (KO = 0). Let us start with the wavefunction UZ(K). The range (29c) 
does not exist and at K 5 KZ the expression (29a) is used. In the range of the small 8 values 
and large negative ol values (see (23) and (24)) an asymptotic representation of Kummer’s 
function U (see Abramowitz and Stegun 1964) defining the function uz is known (see (27) 
and (23b)): 

U(1/2 - 1 ,  I ,  e )  N r(A + l/2)et/2[cos[n(1 - 1/2)]J0(2(hg)”~) 

+ sin[z(h - ~/z)]Y~(z(A~)”‘)) (33) 

where 10, YO are Bessel functions. The condition for the applicability of the quasi-classical 
approximation (296) in the range of small K 

2h(Z~)’’‘ >> 1 (34) 

means that the argument of the Bessel functions occurring in (33) is large. It comes out from 
the expression (23b) that in this range the representations (33) and (29b) match with each 
other and the formula (296) is applicable in the interval 1/8A* << K c KZ. If K c 1/8A2 the 
quasi-classical approximation (296) is inapplicable and the behaviour of the wavefunction 
(27) with R(p; m )  = Rz(p; m)  (see (236)) is determined by the expansion of the Bessel 
functions occurring in (33) in a series with respect to the small values of the argument. 
In this range the function YO has a logarithmically increasing asymptotic representation. 
Disappearance of the term with YO is prevented by the vanishing of the coefficient in front 
of Yo in expression (33). The condition A - 1/2 = N determines the Landau levels in the 
unbounded 20 space. 

For the function U I ( K )  at m = 0, the interval K > KZ remains (see (28~)). and the 
interval 0 c K c KI (see (28a)) disappears. For all that in the expressions (28b, c) we may 
put K I  = 0, since in the quasi-classical approximation the leading contribution to the integral 
occurring in the arguments of the sine and cosine functions comes from the range described 
by (34). The expression (28b) is applicable (at m = 0) in the interval 1/81’ << K < ~ 2 .  
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For the small K ( K  < 1/8hZ) we can use the well hown  asymptotic representation (see e.g. 
Abramowitz and Stegun 1964) 

F ( W ,  I ,  6 )  rr eFIZJo(z(g)1/2) 

which goes over into expression (286) in the quasi-classical range (34) and gives a bounded 
solution in the interval 0 < K < 1/8AZ. The coefficients A and B maintain their form (30) 
also for m = 0. 

As already mentioned, the EES of the QD is determined by the poles of the second 
term in equation (ZO), i.e. by equation Ga(R, R; m) = 0. The latter in the quasi-classical 
approximation leads us, with (22). (27) and (28), (29) taken into account, to the QD EES for 
arbitrary values of the parameters of the system. The form of the functions u1 and uz (cf 
(28), (29)) enables us to perform this task separately for each range of K R  values. In the 
range K R  < K I  the energy levels do not exist. At K R  > K Z  confinement does not play an 
essential role and the energy spectrum of the corresponding electronic slates is of Landau 
type. The energy spectrum of these state8 is calculated on applying ( 2 8 ~ ) .  We arrive at the 
condition U I ( K R )  = 0, leading to 

E [N + ( ~ m l +  m + 1 ) / 2 ] h o  + (fiw/2x)e-2’(A) (35) 

where 

J (h )  = Air dK[q(K)]”2. (36) 

The integral in (36) should be calculated at a value of the variable E which is determined 
by the first term of the RHS of expression (35). It is clear that the last term of the RHS of 
(35) accounts for the influence of the QD boundary on the Landau levels. The condition 
K R  > KZ means that the QD radius is sufficiently large, i.e. 

R > &[I + m  + Z N  + [(ZN + 1 ) ( 2 ~  + 2m + 1)1’/~)’fl. 
If the condition 

(364 

is fulfilled, then J ( A )  = ~ K R  = ( R / 2 f ) 2 .  
In the interval K I  < K R  < KZ there appear edge states (arising due to interaction of 

an electron with the QD boundary). On applying (22) and (28) we obtain the following 
equation for the spectrum of the edge states in the quasi-classical approximation 

112 1/2 R >> 2 Q 2 N  + m / 2  + I N ( N  + m)l ) 

h l r  d K [ l q ( K ) 1 ] 1 / 2 = I r ( N f 3 / 4 ) .  (37) 

After performing the integration in (37) we arrive at the expression describing the spechum 
of the edge states: 
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In general, the transcendental equation (38) can be treated numerically. Its analytical 
solution can be found in the particular case KO << K R  < 1 and KO < 1. In this case the 
power series expansion of the LHS of equation (38) leads to 

A [ ~ ( ? X R ) ” ~  - Z K , 3  

and we obtain 

E = ( N  + f lml+  $)*~wR + imhw OR = a2h/(2pRZ). (40) 

The requirements imposed on KO and K R  determine the conditions of the applicability of the 
expression (40): N >> Iml, R << N I .  It follows that the formula (40) holds in the weak 
magnetic field region. 

4. The influence of the quantum-dot boundary roughness on broadening of the electron 
states 

Let us consider the influence of the QD boundary roughness on the behaviour of EES. In the 
model under consideration reflections of the eleceon occur at a rough QD boundary. The 
time averaging of the electron motion will be replaced by averaging over an ensemble of 
random rough boundaries of the QD of equal mean radu R (for details, see Ziman (1970), 
section 3.2). We admit that a rough QD boundary is described by a random function q(q)  (cf 
(3)). A further assumption says that the ensemble of random functions is normal. It follows 
that this ensemble is made entirely precise by fixing the mean value of q (assumed to be 
zero since the radius R of the QD (see (4)) can be defined by the condition (q((9)) = 0) and 
the binary correlation function. Hence the mean value of the product of an even number 
of functions q falls into a sum of products of binary correlation functions (see appendix 1). 
The binary correlation function in (p, q) space depends only on the difference (q -q’), i.e. 

(n(Ph(b0‘)) = m(q- v’). (41) 

The Fourier transform of the binary correlation function has the form 

(rl  (m)  q (4) = r/z(m)&, -m, (42) 

Averaging the Green function over the ensemble (q(q)]  reduces to averaging of the function 
U occurring in (17). The latter leads with the help of (16) to the desired averaged Green 
function. On performing the averaging procedure described in appendices 1 and 2 we get 

M R ,  m; P‘, “1) = v ( R ,  P‘; m)S,,,. (44) 

The solution of equation (45) has the form 
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where the self-energy part C(m) fulfils the equation: 

By means of the expressions (13). (16) and (46) we obtain the averaged Green function 

( G ( P ,  m; P'. m')) = G ( P ,  P'; m)&,,, (48) 

where 

G(P.  P'; m )  = G ~ P ,  P'; m) - G m h  R; m)G,(R,p ' ;  " U R ,  R; m) 

+ G&(R,  R; m)C(m)). (49) 

Equation (49) differs from (20) by the presence of a term with a self-energetic part in 
the denominator. The term proportional to C ( m )  in the numerator of equation (49) was 
neglected. We based on the expansion (3, hence the contribution to (49) connected with 
C(m) has been taken as small. This contribution has been retained in the denominator of 
(49) since the first term in the denominator can vanish. The zeros of the denominator of the 
RHS of expression (49) determine the EES of the QD in the presence of a rough boundary: 

E = E N ( R ;  m)  - i r (R ;  m )  (50) 

where the energy level width r ( R ;  m) a C ( m ) ,  and E N ( R ;  m) describes the EES if 
C(m) = 0, i.e. in the case of an ideal QD boundary. 

By means of (22) the equation describing EES can be written in the form 

Ri(R;  m) + [aRl(R;  m ) / a R ] C ( m )  = 0. (51) 

The function R I ( R ;  m) in equation (51) depends also on the energy variable E .  Since C(m)  
is considered as a small quantity one can expand, in (51). RI(R;  m) in a power series in 
( E  - E N ( R  m)) .  In RI ( R ;  m )  only the linear term is left and in the second term in (51) the 
zeroth-order term only. The value @-](in') = 0 should be taken in the denominator of (47) 
in this approximation. The solution of (47) depends on how rapidly qz varies as a function 
of (m - m'). If vz decreases rapidly and only one term can be left in the sum over m', then 

(52) X(m) = i[qz(m = o)]"~. 

If 92 is a slowly varying function of (m - m'), i.e. if the number of terms in the sum in 
the RHS of (47) is large, then the summation over m' in (47) can be replaced by integration, 
and (47) takes the form 

For qualitative estimation of the influence of the QD boundary roughness on its EES 
r ( R ;  m )  (see (50)) should be compared with the separation between the nearest energy 
levels of the EES. In the case of weak magnetic field (see (40)) this separation is equal to 



4500 

and for the Landau spectrum this separation is equal to ftw. On the basis of equation (51) 
we obtain the broadening of the energy levels: 

L A  Falkovsky and S Klama 

For a weak magnetic field we obtain 

ir(R; m) = ( ~ / R ) E N ( H  = O)Z(m) = (2/R)(N t lm1/2+ $)2ftwRZ(m) (56) 

and the ratio of the ir(R: m )  and the level separation (54) amounts to 

(l/R)(N t lm1/2+ i ) W m ) .  (57) 

For Z(m) the formula (52)  or (53) should be taken. In the considered case the formula (53) 
has the form 

The effect of the QD boundary roughness on Landau-type levels is described by (55) 
where the derivatives should be calculated with the help of (28c). With the condition (36a) 
fulfilled we find 

ir(R; m )  = (iiwR/2n12) exp(-R2/2i2)X(m) (59) 

where X(m) is given by expressions (52) and (53). The latter expression takes the form 

Physically realistic models of a non-ideal surface as well as the QD boundary as discussed 
in this paper call for further theoretical analysis (cf Ziman 1979) and experiments aimed 
at reaching information on energy level widths. The rough boundary of the QD under 
consideration has been described making use of the random homogeneous field defined at 
the circular boundary. The binary correlation function of this random field depends on the 
angular distance q (see (41)) of points at the circular boundary: in general q&) = qz(cos q) 
(Koroluk et a1 1985). 

The roughness of the QD boundary can be 
characterized by the roughness amplitude a (a2 = (qz(q = 0))) and the correlation length (00; 

the latter represents the angular distance over which the function qz(q)  varies significantly. 
Let us assume that 

Let us consider a simple example. 

vz(c0) = a2cos2(v/2) exp[- sin2(co/~)/w~. 

The Fourier transform (see (43)) of this correlation function has the form 

(61) 

qz(m) = $2P(s:  m) ?(m; 5) = [ f m ( r )  + ( d / d ~ ) f ~ ( r ) ] e - ~  (62) 
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where r = 1 / 2 ~ 0  and Im(r) is the modified Bessel function. Now, for the model defined 
by (61) we shall give the expressions for V m )  for rapidly (see (52)) and slowly (see (53)) 
varying qz as a hnction of (m - m’). On substituting (62) into (52) we obtain 

~ ( m )  = (iu/A)[~o(r) + 1,(r)]@exp(-r/2) ( 5 W  

that is 

C ( m )  Y i a ( (oa /~)”~  for (oa < I. (524 

A further substitution of (62) into (58) leads to 

X(m) 5 (ia2/R)[2N + Iml + $ - (N + i)’P(m, ?)I. (584 

The broadening of the Landau-type levels is described by (59) with C(m) given by (52a) 
for the case of qz representing a rapidly varying function of (m - m’). For the case of 
slowly varying 772 as a function of (m - m‘) by substituting (62) into (60) we obtain 

for m > 0 

for m = 0 (60a) 

1 - ~ ( k ;  r )  for m < 0. 
Y=o 

Let us note that only in the latter case does the level width depend on the sign of m. 
The expressions (52a), (58a) and ( 6 0 ~ )  with (56) and (58) taken into account define the 

electron energy level widths in all the above cases for the model of a rough QD boundary 
with the correlation function (61). 

5. Conclusions 

Within the considered approximation the roughness, i.e. the amplitude a ofthe function 77, 
is assumed to be small compared with the QD radius R. 

We arrived at a remarkably simple result: damping of the edge states referred to 
separations of their levels decreases linearly (see. (56) and (52)) or quadratically (see (56) 
and (58)) in a/R.  It means that edge states in a QD do not exist if the linear dimension of 
the QD is comparable with the roughness amplitude. On the other hand at large roughness 
and strong magnetic field, i.e. if the magnetic length 1 is small in comparison with the QD 
diameter and roughness amplitude, the levels can be observed. In this case only a thin layer 
(of thickness I) of the cyclotron trajectories at the QD boundary is influenced by roughness, 
which leads to broadening of the levels corresponding to these trajectories (see (59)). 

Acknowledgments 

One of the authors (SK) thanks Professor J Morkowski and Dr A R Ferchmin for interest 
and discussions. This research was supported by Project KBN-2 1299 91 01. 



4502 

Appendix 1 

The mixed moment of the nth order of the random variables ?(PI). . . . , q(qn) is determined 
using the characteristic function f,,(ul, q,: . . . ; u., q,,) of the n-dimensional probability 
density function 

L A  Falkovsky and S K l a m  

For an n-dimensional random variable distributed according to the normal law the 
characteristic function (at (q(q)) = 0) has the following well known form (see e.g. Gnedenko 
1969) 

(A1.2) 

Therefore the task of averaging the consecutive terms in the series (A2.3) (cf appendix 2) 
should be performed as follows: each term should first have created its corresponding 
characteristic function (A1.2) and then be averaged using (A1.I). It means an averaging at 
each step of the iteration. Of course, to make use of (Al.1) and (A1.2) one should first 
Fourier transfonn the series (A2.3). 

Appendix 2 

The averaged Green function (13) will be calculated by a method similar to that developed 
in the theory of metals with a random distribution of impurities (Edwards 1958, Abrikosov 
et al 1965). In our case the averaging of the Green function reduces to averaging of the 
function U given by (17). 

Let us introduce the following notation (cf (18), (19)): 

v ( R ,  m; ,or7 m') = v(m, m') @(m)@(m) = vo(m). (A2.1) 

Equation (17) can be rewritten as 

An iteration procedure leads to the following form of (A2.2) as an infinite series: 

, I  

I 1 1  g[m,m'l = - I &,,# .+ - + 

(A2.3) 
I C  * ... +U+ I I I  j / ,  j 

The full lines in (A2.3) correspond to vo(mi) (mi = m, ml, . . . , m') and broken lines 
correspond to the following factor 
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where mi(b) (= m, m, ,  . . . , mk c m') labels the line (from left to right) going from the left 
into that vertex at the beginning of the ith broken line. Each term in the series (A2.3) is 
summed (from -w to +ca) over indices of the internal full lines. There is no summation 
over the free full lines with indices m and m'. 

Let us now assume that the random variables entering the series (A2.3) have a normal 
distribution. Hence the mean values of the products of odd numbers of q factors vanish (cf 
section 4); however, the even-order moments are expressed in terms of the second moments. 
Each moment of order 2n falls into (2n - I)!! terms, which in turn contain n factors (binary 
correlation functions) each. On taking the average of the series (A2.3) (cf appendix 1) we 
obtain 

{''' 

<v(m.m'l> = 7 6 m , m p  + + 

+ ... 
where the sum of terms with moments of the second and fourth order is explicitly shown. 
In (A2.S) to the mth full line there corresponds U&), and to the j th  broken Line there 
corresponds the factor 

(A2.6) 

Here 8 is the Kronecker symbol. By m?) (= m, m l ,  ..., mi < m') is denoted the index of 
the full line going into the vertex with outgoing j t h  broken line; by my) (= ml, . . . , mk < 
m') is denoted the index of the full line going into that vertex where the j th  broken line 
ends. In each term in the series (A2.S) there is performed summation over the indices of 
the internal full lines of the diagram. On writing (A2.6) we have profited from (42). For 
any diagram in (A2.S) with j 2 1 broken lines we shall write the following expression: 

(A2.7) 

It is a straightforward task to sum up the reducible diagrams and we arrive at the Dyson-type 
equation with the self-energy part given by the sum of irreducible diagrams: 

- m =-+a m (A2.8) 

('42.9) 
,/-\\ --+- 

m m m, m 
- 

where the bold line corresponds to u(m). The approximate equation (A2.9) corresponds to 
the (45) in the text. It has been obtained after neglecting the contribution to the self-energy 
part of the irreducible diagrams with crossing broken lines which do not transform into 
diagrams with both free full lines after exclusion of one broken line. Such an approximation 
holds provided that ( 2 p ~ ) ~ ~ * ~ Z ( m ) ~  << h. Also, with the latter inequality fulfilled, the 
perturbation method is applicable to the problem considered. 
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